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Ground states for a class of deterministic spin models with
glassy behaviour

I Borsari, S Graffi and F Unguendoli
Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italy

Received 9 November 1995, in final form 8 February 1996

Abstract. We consider the deterministic model with glassy behaviour, recently introduced by
Marinari, Parisi and Ritort, with HamiltonianH = ∑N

i,j=1 Ji,j σiσj , whereJ is the discrete sine
Fourier transform. The ground state found by these authors forN odd and 2N+1 prime is shown
to become asymptotically degenerate when 2N + 1 is a product of odd primes, and to disappear
for N even. This last result is based on the explicit construction of a set of eigenvectors forJ ,
obtained through its formal identity with the imaginary part of the propagator of the quantized
unit symplectic matrix over the 2-torus.

1. Introduction

It has been recently established [1–3] that a wide class of deterministic, infinite-range
deterministic Ising spin models does actually exhibit the glassy behaviour of the random
coupling case, with the important difference, however, that the mean-field equations of the
model, derived by Parisi and Potters [4] (hereafter called thePP equations), are not the
standardTAP equations. Unlike the random case (see, e.g., [5]), they do not determine the
critical temperature of the glassy transition by linearization around the largest eigenvalue of
the interaction matrix.

Among these models a special role is played by the so-calledsine (or, equivalently,
cosine) model, in which the interaction matrixJ = (J )i,j , i, j = 1, . . . , N;N ∈ N among
N spins (with periodic boundary conditions) defining the Hamiltonian

H = −1

2

N∑
i,j=1

Ji,j σiσj (1.1)

is given by

Ji,j = 2√
2N + 1

sin

(
2πij

2N + 1

)
i, j = 1, . . . , N (1.2)

namely by twice the uppermost left block of the the discrete sine (cosine) Fourier transform

Si,j = 1√
2N + 1

sin

(
2πij

2N + 1

)
i, j = 1, . . . ,2N . (1.3)

The factor 2 accounts for the orthogonality ofJ . HereN is odd andp = 2N + 1 prime,
i.e.p is a prime of the formp = 4m+3. In fact, in this case the ground state configuration
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can be explicitly computed [3] and is given byσj = (
j

p

)
j = 1, . . . , N . Here

(
j

p

)
is the

Legendre symbol ofj , namely(
j

p

)
=

{ +1 if j ≡ x2 (modp)

−1 if j 6≡ x2 (modp)
(1.4)

wherex ∈ (0, 1, . . . , p−1) ≡ Zp = Z(modp). In other words, ifj is a quadratic residue of
p its Legendre symbol is 1, and−1 in the opposite case. The existence of such a complex
ground state, proved by showing that on the spin configuration defined by the Legendre
symbols the energy actually assumes its absolute minimum− 1

2N , yields the possibility of
numerically detecting a first-order ‘crystalline’ phase transition at a temperature higher than
the critical one for the glassy transition [3, 4] and of explicitly finding [4] the corresponding
solution of thePP mean-field equations under the formmi = √

q
(
i
p

)
. Here as usualmi

denotes the magnetization on the sitei, andq = 1
N

∑N
i=1m

2
i the Edwards–Anderson order

parameter. The reader is referred to [4, section 3] for a discussion of the relevance of the
existence of crystalline phase on the glassy behaviour of the system.

The existence of such a ground state critically depends on the arithmetic restrictions on
N (actually Parisi and Potters [4] give arguments supporting its disappearance for general
values ofN ) and hence it can be of interest to look into the question from a rigorous point
of view.

We can distinguish two cases forp odd:

A. p is of the form 4m+ 3 (the case considered by Marinariet al whenp is prime);
B. p is of the form 4m+ 1.

In case A we show that, when the restriction on the primality ofp is essentially removed,
namely whenp = 2N + 1 = p1p2 · · ·ps is the product ofs distinct primes such that
2N + 1 = 4m+ 3 (the factorization ofp = 2N + 1 consists of an odd numbert of primes
pi of the form 4mi + 3 and of an arbitrary number of primes of the formpi = 4mi + 1),
then

(i) The ground-state energy− 1
2N becomes asymptotically degenerate of orderD =

O(2N
(s−1)/s

), namely there areD distinct spin configurationsσ (l)j : j = 1, . . . , p, l =
1, . . . , D such that their energyE(σ (l)j ) fulfills the estimate

E(σ
(l)
j ) 6 − 1

2N
(
1 −KN−1/s

)
(1.5)

for some positive constantK independent ofl.
(ii) The D distinct spin configurationsσ (l)j are obtained as follows:

σ
(l)
j =

{
ψ(j) if ψ(j) 6= 0

±1 if ψ(j) = 0
(1.6)

whereψ(j) is the Jacobi symbol ofj ∈ Zp with respect top = 2N + 1:

ψ(j) =
s∏
i=1

(
j

pi

) (
j

pi

)
= 0 if (j, pi) = 0 (1.7)

(here(k, p) denotes theMCD betweenk andp; (k, p) = 0 means thatk is a multiple ofp)
and the number of zeroes ofψ(j) behaves likeN(s−1)/s for largeN .

(iii) For q suitably small, the magnetization vectorsm(l)j = √
qσ

(l)
j solve thePP mean-

field equations

mi = tanh

(
2βG′(β(1 − q))mi − β

p∑
j=1

Jijmj

)
(1.8)
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where

G(x) = −1

4
ln

(
1 + √

1 + 4x2

2

)
+ 1

4

(√
1 + 4x2 − 1

)
.

We will recall later how the above properties allow us an immediate application of the
argument of Parisi and Potters [4, section 4] to strongly support the conclusion that in this
case there areD ‘crystal’ states with properties analogous to the one existing forp = 4m+3
prime.

In case B we consider the case analogous to that of [3], namelyp = 2N + 1 prime
of the form 4m + 1, and show thatJ cannot admit eigenvectors whose components are
all of the form ±1 in correspondence to the eigenvalues±1. Hence the minimum of the
energy quadratic form〈u, Ju〉 is never reached whenu is a spin configuration, let alone
the configuration of the Legendre symbol valid forp = 4m+ 3. This represents (for such
values ofN ) a rigorous proof of the conjecture of [4], and hence suggests disappearance
of the above ‘crystal state’ picture. As remarked also by G Parisi (private communication)
this result represents a strong indication that there could be two different thermodynamic
limits of the phase diagram according to the arithmetic properties of the number of spins
N in finite volume.

In section 2 we describe the number theoretic argument proving properties (i), (ii) and
(iii) of case A, and in section 3 we prove case B, basing the proof on the explicit construction
of a set of eigenvectors for the operatorJ .

This construction can be interesting in itself because it is based on the metaplectic
representation of the quantized symplectic linear maps over the 2-torus. In particular, the
operatorS turns out to coincide [10, 11] with (the imaginary part of) the operator quantizing
of the standard unit symplectic 2× 2 matrix

Isp =
( 0 −1

1 0

)
.

This operator is aN × N unitary matrix,N being the inverse of the Planck constant, so
that in this context the thermodynamic limitN → ∞ is formally equivalent to the classical
limit.

2. A real eigenvector of the operatorJ

Marinari et al [3] prove that forp = 4m + 3 = 2N + 1 the ground state is given by the
spin configuration defined by the Legendre symbols

σL = (σ1, . . . , σN) σj =
(
j

p

)
j = 1, . . . , N

by explicit verification thatσL is an absolute minimizer of the energy. As a consequence,
σL must necessarily be an eigenvector of the operatorJ defined by (1.2) corresponding to
the eigenvalue 1 (recall thatJ is a real orthogonal matrix so that its spectrum consists only
of the eigenvalues±1). In analogy with this result, in the present case the basic step is
represented by the construction of an eigenvector of the operatorJ whose components are
all ±1 or 0 because it is defined by the Jacobi symbolχJ (x) = ∏s

i=1

(
x
pi

)
, x = 1, . . . , p.

The construction of this eigenvector will be an easy consequence of the following
lemma.
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Lemma 2.1.Let N = ∏s
i=1pi be the product ofs pairwise different odd primes such that

N = 4m+ 3. Then the matrixS defined by (1.3), whose elements are

Sk,x = 1√
N

sin

(
2π

N
kx

)
(2.1)

admits the vectorχJ (x) = ∏s
i=1

(
x
pi

)
, x = 1, . . . , N as an eigenvector corresponding to the

eigenvalue 1.

Proof. It is a classical result in number theory (see, e.g., [7, proposition A.7]) that
χJ (x), x ∈ ZN is the unique primitive multiplicative character of the ringZN = Z(modN),
and it is also well known (see again [7, proposition 2.1] or [8, theorem 8.15]) that the
Gaussian sum

τk(x) =
N∑
k=1

χ(x)e(2πi/N)kx (2.2)

is separable for allk if χ is a primitive multiplicative character. Namely, one has

τk(χ) =
N∑
k=1

χ(k)τ1(χ) (2.3)

whereχ(k) denotes the complex conjugate ofχ(k). On the other hand, [7, theorem 2.1]
states that, ifχ is any real primitive character

τ1(χ) =
 N

1
2 if χ(−1) = 1

iN
1
2 if χ(−1) = −1 .

(2.4)

Therefore in our case we get

(SχJ )k = 1√
N

N∑
x=1

sin

(
2π

N
kx

)
χJ (x) = 1

2i
√
N
(χJ (k)− χJ (−k))

N∑
x=1

χJ (x)e
(2πi/N)kx

= 1

2i
√
N
(χJ (k)− χJ (−k)) i

√
N = 1

2
(χJ (k)− χJ (−k))

sinceχJ (−1) = −1 if N = 4m+ 3 (see, e.g., [8, theorem 9.10]). Now, if(k, pi) > 1 for at
least onei, thenχJ (−k) = 0 = χJ (k) by definition. Let now(k, pi) = 1 for all 1 6 i 6 s.
By the multiplicative property of the Legendre symbols we have(−k
pi

)
=

(−1

pi

)
·
(
k

pi

)
= −

(
k

pi

) (−k
pj

)
=

(−1

pj

)
·
(
k

pi

)
=

(
k

pi

)
because−1 is quadratic residue of all primes of the form 4m + 1 and non residue of the
primes of the form 4m+ 3 [8, theorem 9.10]. Hence we can write

χJ (−k) =
t∏
i=1

pi=4mi+3

(−k
pi

)
·

s−t∏
j=1

pj=4mj+1

(−k
pj

)

= (−1)t
t∏
i=1

pi=4mi+3

(
k

pi

)
·

s−t∏
j=1

pj=4mj+1

(
k

pj

)
= −χJ (k) .
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Therefore

(SχJ )(k) = 1
2(χJ (k)− χJ (−k)) = χJ (k)

and this concludes the proof of the lemma. �

We proceed now to the construction of the real eigenvector ofJ with components
(±1, 0).

Corollary 2.1. Let N be such thatp ≡ 2N + 1 = ∏s
i=1pi wherepi : i = 1, . . . , s are s

distinct primes such that there is an odd numbert of primespi of the form 4mi + 3. Let
ψ ∈ Rn be the vector formed by the firstN components of the real primitive character
χJ (x)(modp = 2N + 1) defined in lemma 2.1 above. Then the operatorJ acting onCN ,
defined by the matrix (1.2), admitsψ as an eigenvector corresponding to the eigenvalue 1.

Proof. We have

Jk,x = 2√
2N + 1

sin

(
2πkx

2N + 1

)
.

Now the matrixS is row antisymmetric, and the(2N + 1)th row vanishes. We have seen
above thatχJ (−k) = −χJ (k). Then, by the former lemma

(Jψ)k = 2√
2N + 1

N∑
x=1

sin

(
2πkx

2N + 1

)
ψ(k)

= 2

2
√

2N + 1

2N+1∑
x=1

sin

(
2πkx

2N + 1

)
ψ(k) = χJ (k)

where we now havek = 1, . . . , N . This proves the corollary. �

Let us now turn to the proof of assertions (i), (ii) and (iii) stated in the introduction.
Consider first the simplest possible case, given byN = p1p2, wherep1 is of the form
4m+ 3 andp2 of the form 4m+ 1, so thatN is of the form 4m+ 3. We can assume (see,
e.g., [7]) that|p1 − p2| is independent ofN , so thatp1 ∼ √

(N), p2 ∼ √
(N) asN → ∞.

With p = 2N + 1, consider the eigenvectorψ(x) : ψ(x) ∈ {−1, 0, 1} of corollary 2.1.
Remark that the zero components of the eigenvector are obtained in correspondence of the
multiples ofp1 or p2 between 1 andN . There are at most

h = p1 − 1

2
+ p2 − 1

2

such multiples, and, sincep1,2 ∼ √
N , we haveh ∼ √

N . Hence the energyE(ψ) of the
vectorψ (note that this vector is not a spin configuration) is given by

E(ψ) = −1

2

N∑
i,j=1

Si,jψiψj = −1

2

(|ψ+|2 − |ψ−|2)
∼ −1

2
(N −

√
N) = −N

2

(
1 − 1√

N

)
.

Hereψ+ andψ− denote the projection ofψ on the eigenspacesV ± corresponding to the
eigenvalues 1 and−1, respectively.
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Now out ofψ we can defineD = 2h spin configurations in the following way:

σx =
{
ψ(x) if ψ(x) 6= 0

±1 if ψ(x) = 0
x = 1, . . . , N . (2.5)

Now setv = σ −ψ . The energyE(σ) = − 1
2

(‖σ+‖2 − ‖σ−‖2
)

is obviously maximal when
v ∈ V −. Therefore, sincev has at most

√
N non-zero components andψ is an eigenvector

corresponding to the eigenvalue 1 ofS, we have

E(σ) 6 −1

2

(‖ψ‖2 − ‖v‖2
) ∼ −1

2
(N −

√
N) = −N

2

(
1 − 1√

N

)
.

Hence the energy of allD statesψl : l = 1, . . . , D tend to the minimum energy− 1
2N as

N → ∞.
There is now no difficulty in extending the argument to the general case stated in

section 1, in whichN = p1 × · · · × ps with N = 4m + 3 andp1 < p2 < · · · < ps odd
primes. We assume that there is a constantC (depending ons) such thatps 6 Cp1. By
repeating the above argument one easily obtains that in this case the numberh of the zero
components of the eigenvectorψ of S fulfills the estimate

h ∼ AN(s−1)/s (2.6)

for some constantA indepedent ofN (but dependent ons). Hence, as above, we can
constructD = 2h spin configurationsσ whose energyE(σ) fulfills the estimate

E(σ) 6 −N
2

(
1 − K

N1/s

)
(2.7)

for someK independent ofs, and thus the ground state is asymptotically degenerate of
orderD asN → ∞. This concludes the verification of assertions (i) and (ii) of section 1.

The verification of assertion (iii) proceeds exactly as in [4]: the ansatz

mi = √
qεi q = 1

N

N∑
i=1

m2
i

where the{εi} are±1 or 0 reduces thePP equations (1.8) to

q = tanh2

{
β
√
q

[
1 + 1 −

√
1 + 4β2(1 − q)2

2β(1 − q)

]}
. (2.8)

Since we can take for{εi} any one of the eigenvectorsψl; l = 1, . . . , D of S constructed
before, we see that the magnetization vectors of componentsmli = √

qψl
i yield D solutions

of the mean-field equations (1.8) providedq solves (2.8). Now equation (2.8) always admits
the paramagnetic solutionq = 0 and hence, as in [4], for sufficiently largeβ will also admit
a solution forq 6= 0. Moreover, the specific Gibbs free energyβfl of all solutions will be
given by [4, equation (26)] up to an error of orderN−1/s , namely

βfl = 1 + √
q

2
ln

[
1

2
(1 + √

q)

]
+ 1 − √

q

2
ln

[
1

2
(1 − √

q)

]
− β

2
q −G(β(1 − q))

+O(N−1/s) . (2.9)
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In fact, the total Gibbs free energyβ8 as a function of the magnetizationsmi is given by
[4, equation (19)]

β8 = 1

2

N∑
i=1

{
(1 +mi)ln

[
1

2
(1 +mi)

]
+ (1 −mi)ln

[
1

2
(1 −mi)

]}

−β
2

N∑
i,j=1

Si,jmimj −NG(β(1 − q) .

Takingmi = √
qψl

i we get (2.9) because
∑N

i,j=1 Si,jψ
l
i ψ

l
j = q + O(N−1/s).

Therefore we can apply directly the results of the numerical analysis of [4] showing
that (2.8) admits a solution withq = 0.92 for T < 0.400 to conclude that there areD
solutions with suchq, which for sufficiently largeN will have free energy larger than that
of the paramgnetic solutions as long asT > 0.178, and smaller forT < 0.178 so that the
absolute minimum of the specific free energy is also asymptotically degenerate. Therefore
we can conclude that the picture of the ‘crystal’ state should persist also in this situation,
up to a degeneracy.

3. The case ofp prime of the form 4m + 1. Explicit construction of the eigenvectors
of S

Let us first proceed to the construction of a set of eigenvectors forS. We start from the
obvious observation that this operator is the imaginary part of the discrete Fourier transform,
defined as

Fψl = 1√
p

p−1∑
k=0

e2πi/pψk . (3.1)

Namely

S = F − F−1

2i
= F − F∗

2i
. (3.2)

The discrete Fourier transform operatorF coincides with the unitary evolution operatorVJ
quantizing, via canonical (see [10]) or, equivalently, geometric (see [11]) quantization and
metaplectic representation of Sp(1,R), the map on the torusT2 defined by the standard unit
symplectic matrix( 0 1

−1 0

)
. (3.3)

This enables us to adapt to the elliptic map of the present case the eigenvector construction
obtained in [12] for the hyperbolic ones, based on the determination of suitable linear
combinations of the orthogonal vectors (for fixedk ∈ ZN )

ψk,l(q) = 1√
p

exp

[
2πi

p
(kq2 + lq)

]
k, l ∈ Zp (3.4)

by action of the map itself.
The orthonormality of the basis{ψk,l(q)} : l = 0, . . . , p − 1, k fixed requiresp prime

and can be easily deduced using the well known properties of quadratic Gauss sums, in
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particular from the relation (see e.g., [8, chapter 9])

p−1∑
k=0

exp

[
2πi

p
(ak2 + bk)

]
=


εpp

1
2

(
a

p

)
exp

[
2π

p
b2(4a)−1

]
if a 6≡ 0 (modp)

pδ0
b if a ≡ 0 (modp)

(3.5)

where

εp =
{

1 p ≡ 1 (mod 4)

i p ≡ 3 (mod 4) .
(3.6)

Here and in what follows ifx ∈ Zp the symbolx−1 denotes its inverse inZp, namely
x · x−1 ≡ 1 (modp). The inverse is unique becauseZp is a field sincep is prime.

If p = 4m+ 1, −1 is a quadratic residue ofp as we have already recalled; then we can
denote byλp (or simplyλ where the context is clear) the largest integer (modp) such that

λ2
p ≡ −1 (modp) (3.7)

and we denote by0 a representative of the equivalence relation inZ∗
p:

x ∼ y ⇐⇒ y = λsx for s ∈ {1, 2, 3, 4} . (3.8)

We can write

Z∗
N = 0 ∪ (λ0) ∪ (−0) ∪ (−λ0) (3.9)

and we can choose0 in such a way that

0 ∪ (λ0) = {1, . . . ,2m} . (3.10)

Then we have:

Proposition 3.1.A complete system of orthogonal eigenvectors of the operatorFp, where
p is prime such thatp = 4m+ 1, is given by

ψ{k,0} with eigenvalue 1

{8j,r : j ∈ 0, r = 0, 1, 2, 3} with eigenvalueir
(3.11)

where

8j,r = 1

2

3∑
s=0

i−sr exp

[
πi

p
λj2 1 − λrs

2

]
ψk,λr j j ∈ 0 r = 0, 1, 2, 3 (3.12)

andk = λ/2.

Proof. We have

(Fψk,j )m = 1√
p

p−1∑
q=0

exp
2πi

p
mq exp

2πi

N
(kq2 + jp)

= εp

(
k

p

)
exp

[
−2πi

p
(m+ j)2 + (4k)

−1
]

= exp

[
2πi

p
(kj2 + km2 + 2mkj)

]

= exp

[
πi

p
λj2

]
(ψk,λj )m



Ground states of deterministic models 1601

and, in general,

Fψk,λsj = exp

[
πi

p
λj2λ2s

]
ψk,λs+1j (3.13)

where we have used the relation(
k

p

)
=

(
λ

p

) (
2−1

p

)
=

(
λ

p

) (
2

p

)
= (−1)(N−1)/4(−1)(p

2−1)/8

=
{

1 · 1 p ≡ 1 (mod 1)

(−1)(−1) p ≡ 3 (mod 4)

(see [8, theorems 9.4, 9.5]).
Then

F8j,r = 1

2

3∑
s=0

i−sr exp

[
πi

p
λj2 1 − λ2s

2

]
Fψk,λsj

= 1

2

3∑
s=0

i−sr exp

[
πi

p
λj2 1 − λ2s

2

]
exp

[
πi

p
λj2λ2s

]
ψk,λsj

= ir
1

2

3∑
s=0

i−(s+1)r exp

[
πi

p
λj2 1 − λ2(s+1)

2

]
ψk,λs+1j

= ir8j,r .

The orthonormality of the eigenvectors is implied by the orthonormality of the vectorsψk,j
and a simple computation based on (3.5).

It is now straightforward to obtain a complete system of eigenvectors of the sine Fourier
transform operatorS = Cp−1 −→ Cp−1 whose matrix elements are

(S)xy = 1√
p

sin

(
2π

p
xy

)
x, y = 1, . . . , p − 1 (3.14)

obtained by the discrete Fourier transform operatorFp

S = Fp − F∗
p

2i
. (3.15)

Remark thata priori S is defined onCp. For the sake of simplicity we have eliminated the
first row and the first column which are equal to zero and we thus consider it as an operator
on Cp−1.

We construct the eigenvalues of the operatorS by means of linear combinations of the
real vectors

1√
p

cos

(
2π

p
ax2

)
sin

(
2π

p
bx

)
1√
p

sin

(
2π

p
ax2

)
sin

(
2π

p
cx

) (3.16)

with a suitable choice ofa, b, c. With the previous set of0 andλ we have (the proof is
a straightforward verification based on the action ofF specified in proposition 3.1 and on
(3.2)):
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Proposition 3.2.Let p be a prime such thatp = 4m + 1; then the spectrum of the the
operatorS consists of the eigenvalues−1, 0, 1, and a set of corresponding eigenvectors is
specified as follows:

ej (x)+ e−j (x) j = 1, . . . ,2m eigenvalue 0

8+
k,p(x) k ∈ 0 eigenvalue+ 1

8−
h,p(x) h ∈ λ0 eigenvalue− 1 .

(3.17)

Hereej : j = 1, . . . , p − 1 is the canonical basis ofRp−1, x = 1, . . . , p − 1 and

8+
k,p(x) = 1√

p

[
cos

(
2π

p
λ(2)−1x2

)
sin

(
2π

p
kx

)]

+ 1√
p

[
sin

(
2π

p
λ(2)−1(k2 + x2)

)
sin

(
2π

p
λkx

)]

8−
h,p(x) = 1√

p

[
cos

(
2π

p
λ(2)−1x2

)
sin

(
2π

p
hx

)]

+ 1√
p

[
sin

(
2π

p
λ(2)−1(h2 + x2)

)
sin

(
2π

p
λhx

)]
.

Remark. (i) By standard estimates on Gauss sums (we omit the details) it can easily be
seen that the above eigenvectors are normalized as follows:

‖8+
k,p‖ = ‖8−

h,p‖ = 1 + O

(
1√
p

)
. (3.18)

(ii) By the same argument of corollary 2.1, ifp = 2N + 1 (N = 2m) an eigenvector
basis forJ is given by

8+
k,2N+1(x) k ∈ 0 x = 1, . . . , N eigenvalue+ 1

8−
h,2N+1(x) h ∈ λ0 x = 1, . . . , N eigenvalue− 1 .

(3.19)

(iii) The choice of the indexh ∈ λ0 labelling the vectors8−
h is due to following

property of the eigenvector components:

8−
h (x) = 8+

k (λx) if h = λk . (3.20)

Different choices of indexh (always in a0-type subset ofZN ) generate analogous relations
among the eigenvector components.

Let us now apply this construction to prove for thatp = 2N + 1 prime of the form
4m+ 1 the matrixJ does not admit any spin configuration among its eigenvectors. To see
this, first remark that, by the same argument of lemma 2.1 and corollary 2.1, the vector
χL

(
x
p

)
: x = 1, . . . , N is in the kernel ofS. Indeed we have

(SχL)k = 1√
p

N∑
x=1

sin

(
2π

p
kx

)
χL(x) = 1

2i
√
p
(χL(k)− χL(−k))

p∑
x=1

χL(x)e
(2πi/p)kx

= 1

2i
√
p
(χL(k)− χL(−k)) i√p = 0
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sinceχL(−1) = 1 if N = 4m+ 1 (see, e.g., [7, theorem 9.10]).
The second step is represented by the observation that, whenp is a prime of the form

4m+1, if a spin configuration is an eigenvector it cannot distinguish between the eigenvalue
1 or −1 of S (and hence ofJ ), whose eigenspacesV + and V − have one and the same
dimension as we have seen above. This fact is the key difference withp prime of the form
4m+ 3: here the dimension ofV + andV − differs by one and the distinction is possible.

Lemma 3.1.Let p = 2N + 1, N = 2m, and once more denote byV ± the subspaces
corresponding to the eigenvalues±1 of S. Then there existsv =∈ V +, v = (v1, . . . , vp),
vk ∈ {±1}, k = 1, . . . , p if and only there existsu =∈ V −, u = (u1, . . . , up),
uk ∈ {±1}k = 1, . . . , p.

Proof. The vectors8+
k,p(x) and8−

h,p(x) defined in (3.19) spanV + andV −, respectively,
and taken together with the basis ofV 0 form a basis ofCp. Therefore ifv ∈ V + there are
coefficientsck such that

v =
∑
k∈0

ck8
+
k,p .

Now set

u =
∑
h∈λ0

dh8
−
h,p

with dλk = ck. The vectoru is obviously the eigenvector ofS corresponding to the
eigenvalue−1. Moreover, since8−

h,p(x) = 8+
k,p(λx), we have

ux =
∑
h∈λ0

dh8
−
h,p(x) =

∑
k∈0

ck8
+
k,p = vλx .

Thereforeux ∈ {±1} ⇐⇒ vλx ∈ {±1} ⇐⇒ vx ∈ {±1} x = 1, . . . , p − 1 and this proves
the lemma. �

Hence we have:

Proposition 3.3.If p = 2N + 1, N = 2m no antisymmetric eigenvector (with eigenvalue
±1) of the matrixS, and hence no eigenvector ofJ , can have all components±1.

Proof. Consider the numbers sin((2π/p)kx) , k, x = 1 . . . , p − 1. Only p − 1 = 4m
of them are distinct. We can label them asµs = sin((2π/p)s) , s = 1 . . . , 1

2(p − 1) = 4m.
These numbers are all irrational (see, e.g., [6, theorem 6.15]). Now the eigenvector relation
SχL = 0 yields, since the eigenvalue 0 has multiplicity 2m+1, p−2m−1 = 1

2(p−1) = 2m
independent relations with integer coefficients among the 4m numbersµs . By the
antisymmetry ofS, these conditions are necessarily equivalent to the standard reflection
conditions

µs = sin

(
2π

p
s

)
= − sin

(
2π

p
(p − s)

)
= µp−s s = 1, . . . ,2m . (3.21)

If there is an eigenvectorv = (v1, . . . , vp) with vs ∈ {±1}, s = 1, . . . , p−1, the eigenvector
conditionSv = v yieldsp − 1 −m = 3m independent conditions with integer coefficients
because the eigenvalue 1 has multiplicitym. Again, 2m of these conditions are simply
(equivalent to) the conditions (3.21). We are thus left withm independent relations with
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integer coefficients among the 2m numbersµs . However, by lemma 3.1, the existence ofv
as above is equivalent to the existence ofu = (v1, . . . , up) with us ∈ {±1}, s = 1, . . . , p−1
such thatSv = −v. Therefore, since also the multiplicity of the eigenvalue−1 is m, we
get otherm independent relations with integer coefficients between the numbersµs . The
m relationsSv = v are independent of them relationsSu = −u because otherwise the
vectorsu andv would have non-zero components along each other, thus contradicting the
orthogonality betweenV + andV −. We thus end up with 2m linearly independent relations
with integer coefficients among the 2m numbersµs , and this contradicts their irrationality.
This proves the statement as far as the matrixS is concerned, and the assertion forJ follows
immediately by antisymmetry. This proves the proposition. �

Remark. The above argument applies also to anyp = 4m+ 1 non-prime provided

(a) V + andV − have the same dimension, and
(b) lemma 3.2 also holds forp non-prime.

Property (a) holds forS, and hence forJ , because the eigenspaces ofF corresponding to
the eigenvaluesi and −i have one and the same dimension; however, we are unable to
prove property (b), even though it looks natural, because the eigenvector construction of
proposition 3.1 requiresp prime.
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