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Ground states for a class of deterministic spin models with
glassy behaviour

| Borsari, S Graffi and F Unguendoli

Dipartimento di Matematica, Universitdi Bologna, 40127 Bologna, Italy
Received 9 November 1995, in final form 8 February 1996

Abstract. We consider the deterministic model with glassy behaviour, recently introduced by
Marinari, Parisi and Ritort, with Hamiltoniatl = Z j=1Ji,joioj, whereJ is the discrete sine
Fourier transform. The ground state found by these author¥ fodd and 2V +1 prime is shown

to become asymptotically degenerate wheh-21 is a product of odd primes, and to disappear
for N even. This last result is based on the explicit construction of a set of eigenvectors for
obtained through its formal identity with the imaginary part of the propagator of the quantized
unit symplectic matrix over the 2-torus.

1. Introduction

It has been recently established [1-3] that a wide class of deterministic, infinite-range
deterministic Ising spin models does actually exhibit the glassy behaviour of the random
coupling case, with the important difference, however, that the mean-field equations of the
model, derived by Parisi and Potters [4] (hereafter calledAhequations), are not the
standardrap equations. Unlike the random case (see, e.g., [5]), they do not determine the
critical temperature of the glassy transition by linearization around the largest eigenvalue of
the interaction matrix.

Among these models a special role is played by the so-caileel (or, equivalently,
cosing model, in which the interaction matriX = (J); ;,i,j =1,..., N; N € N among
N spins (with periodic boundary conditions) defining the Hamiltonian

1 N
_é Z J,"jO',‘O'j (11)
ij=1
is given by

i,j=1...,N (1.2)

2 < omij )
.I,'qj: Sin
Jon i1 o\ 2N 1

namely by twice the uppermost left block of the the discrete sine (cosine) Fourier transform

1 [ 27ij
S; ;= sin i,j=1...,2N. 1.3
T /2N 1 <2N+1> J (1.3)

The factor 2 accounts for the orthogonality 6f Here N is odd andp = 2N + 1 prime,
i.e. p is a prime of the fornp = 4m + 3. In fact, in this case the ground state configuration

0305-4470/96/081593+12$19.5@C) 1996 IOP Publishing Ltd 1593



1594 | Borsari et al

can be explicitly computed [3] and is given by = (é) j=1,...,N. Here (%) is the
Legendre symbol of, namely

i +1 if j =x? (mod p)
(’) - . (1.4)
p -1 if j % x2 (mod p)
wherex € (0,1, ..., p—1) = Z, = Z(mod p). In other words, ifj is a quadratic residue of

p its Legendre symbol is 1, andl in the opposite case. The existence of such a complex
ground state, proved by showing that on the spin configuration defined by the Legendre
symbols the energy actually assumes its absolute minimt%rN, yields the possibility of
numerically detecting a first-order ‘crystalline’ phase transition at a temperature higher than
the critical one for the glassy transition [3, 4] and of explicitly finding [4] the corresponding
solution of thepp mean-field equations under the fonm = \/ﬁ(é) Here as usuat;
denotes the magnetization on the sitandg = + SN m? the Edwards—Anderson order
parameter. The reader is referred to [4, section 3] for a discussion of the relevance of the
existence of crystalline phase on the glassy behaviour of the system.

The existence of such a ground state critically depends on the arithmetic restrictions on
N (actually Parisi and Potters [4] give arguments supporting its disappearance for general
values of N) and hence it can be of interest to look into the question from a rigorous point
of view.

We can distinguish two cases fprodd:

A. p is of the form 4n 4+ 3 (the case considered by Marinatial when p is prime);
B. pis of the form 4n + 1.

In case A we show that, when the restriction on the primality 0§ essentially removed,
namely whenp = 2N + 1 = pyp,--- ps is the product ofs distinct primes such that
2N + 1 = 4m + 3 (the factorization ofp = 2N + 1 consists of an odd numberof primes
p; of the form 4n; + 3 and of an arbitrary number of primes of the fopn= 4m; + 1),
then

(i) The ground-state energy%N becomes asymptotically degenerate of order=

oM™, namely there areD distinct spin configurationSrj(’) cj=1...,p, 1 =
1, ..., D such that their energE(oj(')) fulfills the estimate
E(0") < 3N (1—- KN") (1.5)

for some positive constark independent of.

(ii) The D distinct spin configurations,” are obtained as follows:

. i Uiy 0
o = { Vo o) # w6
+1 if (j)=0
wherey (j) is the Jacobi symbol of € Z, with respect top = 2N + 1.
: (1 J Lo
= - =~ 1=0 if(,p)=0 1.7
v () 1‘!(17) (m) if (j, pi) (1.7)

(here(k, p) denotes theicD betweenk and p; (k, p) = 0 means that is a multiple of p)
and the number of zeroes ¢f(j) behaves likew¢=1/s for large N.

(iii) For ¢ suitably small, the magnetization vector§’ = ,/go" solve thepp mean-
field equations

4
m; = tan?—(ZﬁG/(ﬁ(l—q))m,- - ﬁZJ,-jmj) (1.8)
=1
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where

2
Gx) = —fﬂn(1+ ;+4x> v (Vivad-1).

We will recall later how the above properties allow us an immediate application of the
argument of Parisi and Potters [4, section 4] to strongly support the conclusion that in this
case there ar® ‘crystal’ states with properties analogous to the one existingfer4m+3
prime.

In case B we consider the case analogous to that of [3], napely2N + 1 prime
of the form 4n + 1, and show that/ cannot admit eigenvectors whose components are
all of the form+1 in correspondence to the eigenvaldes. Hence the minimum of the
energy quadratic formju, Ju) is never reached whem is a spin configuration, let alone
the configuration of the Legendre symbol valid for= 4m + 3. This represents (for such
values of N) a rigorous proof of the conjecture of [4], and hence suggests disappearance
of the above ‘crystal state’ picture. As remarked also by G Parisi (private communication)
this result represents a strong indication that there could be two different thermodynamic
limits of the phase diagram according to the arithmetic properties of the number of spins
N in finite volume.

In section 2 we describe the number theoretic argument proving properties (i), (i) and
(i) of case A, and in section 3 we prove case B, basing the proof on the explicit construction
of a set of eigenvectors for the operatbr

This construction can be interesting in itself because it is based on the metaplectic
representation of the quantized symplectic linear maps over the 2-torus. In particular, the
operatorS turns out to coincide [10, 11] with (the imaginary part of) the operator quantizing
of the standard unit symplectic22 matrix

(1 o)

Isp = .

EANE T

This operator is av x N unitary matrix, N being the inverse of the Planck constant, so

that in this context the thermodynamic limit — oo is formally equivalent to the classical
limit.

2. A real eigenvector of the operatorJ

Marinari et al [3] prove that forp = 4m + 3 = 2N + 1 the ground state is given by the
spin configuration defined by the Legendre symbols

p

by explicit verification thatr; is an absolute minimizer of the energy. As a consequence,
op must necessarily be an eigenvector of the operatdefined by (1.2) corresponding to
the eigenvalue 1 (recall thdt is a real orthogonal matrix so that its spectrum consists only
of the eigenvaluestl). In analogy with this result, in the present case the basic step is
represented by the construction of an eigenvector of the opefaiitose components are
all £1 or 0 because it is defined by the Jacobi sympalx) = Hle(%), x=1...,p.

The construction of this eigenvector will be an easy consequence of the following
lemma.

o, = (01,...,0N) oj=<]) j=1...,N
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Lemma 2.1Let N = []}_, p; be the product of pairwise different odd primes such that
N = 4m + 3. Then the matridx§ defined by (1.3), whose elements are

1 2w
Skx = ——=Sin| —k 2.1
= i k) @)
admits the vectog; (x) = ]_[le(%), x=1,..., N as an eigenvector corresponding to the
eigenvalue 1.

Proof. It is a classical result in number theory (see, e.g., [7,proposition A.7]) that
xs(x), x € Zy is the unique primitive multiplicative character of the riig = Z(modn),

and it is also well known (see again [7, proposition 2.1] or [8,theorem 8.15]) that the
Gaussian sum

N
Te(x) = Y x (x)e®Mk (2.2)
k=1
is separable for alt if x is a primitive multiplicative character. Namely, one has
N
w(x) =Y x()T(x) (2.3)
k=1

wherex (k) denotes the complex conjugate ptk). On the other hand, [7,theorem 2.1]
states that, ify is any real primitive character

N3 if x(—1) =1
n(x) = . . (2.9)

iN2 if x(—1) =—1.

Therefore in our case we get

Sx)e = 1 iSin (anx) ¥ (x) = ! Oty (k) — 37 (—k)) XN: Xy (x)e2ni Nk

VNI AN 2iv/N ~
1 1
= iy % ® = xR iVN =5 (s () = x5 (=K)

sincey;(—1) = —1if N =4m+ 3 (see, e.g., [8,theorem 9.10]). Now,(i, p;) > 1 for at
least one, theny;(—k) = 0 = x;(k) by definition. Let now(k, p;) = 1 forall 1< i <.
By the multiplicative property of the Legendre symbols we have

G)=G)G)=-G) G)=6)G)=()

because-1 is quadratic residue of all primes of the fornz 4 1 and non residue of the
primes of the form 4 + 3 [8, theorem 9.10]. Hence we can write

v 161G

i= Di j=1 Pj
pi=4m;+3 pj=4m;+1
t k s—t k
=" ] () -1 <) = —xs k).
i=1 Pi j=1 j

pi=4m;+3 pj=4m;+1
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Therefore

(Sxs) (k) = %(Xf(k) — x1(=k)) = x, (k)
and this concludes the proof of the lemma. |

We proceed now to the construction of the real eigenvectoy afith components
(+1, 0).

Corollary 2.1.Let N be such thatp =2N +1=[]_, p; Wwherep; : i = 1,...,s ares
distinct primes such that there is an odd numbef primes p; of the form 4n; + 3. Let

¥ € R" be the vector formed by the firg¢ components of the real primitive character
xs(x)(mod p = 2N + 1) defined in lemma 2.1 above. Then the operatacting onC?,
defined by the matrix (1.2), admitg as an eigenvector corresponding to the eigenvalue 1.

Proof. We have

Jex = 2 sin( Zﬂkx>
T /2N+1 \2N+1

Now the matrix$ is row antisymmetric, and th€N + 1)th row vanishes. We have seen
above thaty;(—k) = —x, (k). Then, by the former lemma

) 2 im( 2k )w( )
k= —Fm—
V2N + 1 2N +1
2 2N+1 ( 27T )
= sin Yk) = xs(k)
242N + 1 ; 2N +1
where we now havé = 1, ..., N. This proves the corollary. O

Let us now turn to the proof of assertions (i), (i) and (iii) stated in the introduction.
Consider first the simplest possible case, givenNoy= p;p», where p; is of the form
4m + 3 and p, of the form 4n + 1, so thatV is of the form 4n + 3. We can assume (see,
e.g., [7]) that|p1 — p»| is independent oV, so thatp; ~ +/(N), p» ~ /(N) asN — oo.
With p = 2N + 1, consider the eigenvectar(x) : ¥(x) € {—1,0, 1} of corollary 2.1.
Remark that the zero components of the eigenvector are obtained in correspondence of the
multiples of p; or p, between 1 andV. There are at most
pi—1 p2—1

2+2

such multiples, and, sincg; » ~ /N, we haveh ~ +/N. Hence the energf (y) of the
vectorys (note that this vector is not a spin configuration) is given by

h =

1
E(y) = Zs,,vmzf,— S (WP =)

l]l

1 N
- =5 (1- )
on

Herey™ andy~ denote the projection of
eigenvalues 1 and-1, respectively.

n the eigenspaceg* corresponding to the



1598 | Borsari et al

Now out of v we can defineD = 2" spin configurations in the following way:

¥(x) if ¥(x)#0
oy = x=1,...,N. (2.5)
+1 if w(x)=0

Now setv = o — . The energyE(o) = —3 (lo*[|> — lo~|12) is obviously maximal when
v € V. Therefore, since has at most/N non-zero components and is an eigenvector
corresponding to the eigenvalue 1 $fwe have

1 2 a1 N 1
E@) < =5 (W17 = vl?) ~ =5 (N = VN) = = (1 ﬁ) :
Hence the energy of alb statesy’ : I = 1,..., D tend to the minimum energy%N as
N — oo.

There is now no difficulty in extending the argument to the general case stated in
section 1, in whichV = p; x --- x p; with N =4m +3 andp; < p, < --- < p, odd
primes. We assume that there is a constar(depending ory) such thatp, < Cp;. By
repeating the above argument one easily obtains that in this case the nummibtre zero
components of the eigenvectgr of S fulfills the estimate

h~ ANG~D/s (2.6)

for some constant indepedent ofN (but dependent om). Hence, as above, we can
constructD = 2" spin configurations whose energyE (o) fulfills the estimate

N K
E(o) < - <1— Nl/> 2.7)

for some K independent of, and thus the ground state is asymptotically degenerate of
orderD as N — oo. This concludes the verification of assertions (i) and (ii) of section 1.
The verification of assertion (iii) proceeds exactly as in [4]: the ansatz

1 N
mi= g6 q= ) mf
i=1
where the{e;} are+1 or 0 reduces thep equations (1.8) to

1—¢m]} 08)

28(1—q)

q = tanif {,Bﬁ |:1+

Since we can take fofe;} any one of the eigenvectors’; I =1, ..., D of S constructed
before, we see that the magnetization vectors of compomq‘nis «/ﬁl//,-l yield D solutions

of the mean-field equations (1.8) providgdolves (2.8). Now equation (2.8) always admits
the paramagnetic solutian= 0 and hence, as in [4], for sufficiently largewill also admit

a solution forqg # 0. Moreover, the specific Gibbs free eneiff of all solutions will be
given by [4, equation (26)] up to an error of order?/s, namely

1+ 1 1-— 1
e [2(1+ @} 7 [2(1‘ ﬁ)] ~La-Gpa-q

Bfi =

+O(N~Y5). (2.9)
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In fact, the total Gibbs free energy® as a function of the magnetizations is given by
[4, equation (19)]

N

1 1 1
po =7 ; {(1+m,»)ln |:2(1+m,-)i| +(1—mln [2(1— m,-)“

/3 N
-5 > S jmimj = NG(B(1—q).
ij=1

Takingm; = /gy we get (2.9) becausE,,_; S ¥!v! = g + O(N~Y).

Therefore we can apply directly the results of the numerical analysis of [4] showing
that (2.8) admits a solution with = 0.92 for T < 0.400 to conclude that there are
solutions with suchy, which for sufficiently largeV will have free energy larger than that
of the paramgnetic solutions as long As> 0.178, and smaller fof' < 0.178 so that the
absolute minimum of the specific free energy is also asymptotically degenerate. Therefore
we can conclude that the picture of the ‘crystal’ state should persist also in this situation,
up to a degeneracy.

3. The case ofp prime of the form 4m + 1. Explicit construction of the eigenvectors
of S

Let us first proceed to the construction of a set of eigenvectors fowe start from the
obvious observation that this operator is the imaginary part of the discrete Fourier transform,
defined as

1%
Fyp= - &Py, 3.1
(] Jp kZ:(:) Y (3.1)

Namely

_F-F -1 _F=F
22
The discrete Fourier transform operatBrcoincides with the unitary evolution operat@y
guantizing, via canonical (see [10]) or, equivalently, geometric (see [11]) quantization and
metaplectic representation of @pR), the map on the torug? defined by the standard unit
symplectic matrix

( —01 ;) (3:3)

This enables us to adapt to the elliptic map of the present case the eigenvector construction
obtained in [12] for the hyperbolic ones, based on the determination of suitable linear
combinations of the orthogonal vectors (for fixed Zy)

S

(3.2)

1 2
Vii(q) = —— exp[(kq2 + lq)} k,leZ (3.4)
o NG P !
by action of the map itself.
The orthonormality of the basig/,;(¢)} : 1 =0, ..., p — 1, k fixed requiresp prime
and can be easily deduced using the well known properties of quadratic Gauss sums, in
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particular from the relation (see e.qg., [8, chapter 9])

p—1 i €,p? (“) exp[znbz(éla)l} if a = 0 (mod p)
exp[(akz + bk):| = p P
=0 i péy if « = 0 (mod p)
(3.5)

where
1 p=1 (mod 4
€ = (3.6)
i p=3 (mod4.
Here and in what follows ift € Z, the symbolx~! denotes its inverse it,, namely
x-x~t=1(modp). The inverse is unique becauZg is a field sincep is prime.
If p=4m+1, —1is a quadratic residue gf as we have already recalled; then we can
denote byx, (or simply A where the context is clear) the largest integer (mpdauch that

A2 =-1 (modp) (3.7)
and we denote by" a representative of the equivalence relatiorZjn

xX~y<s=y=»1x fors e {1,2,3,4}. (3.8)
We can write

Zy =T U@ U (=T) U (=A) (3.9
and we can choosE in such a way that

ruan) ={1,...,2m}. (3.10)

Then we have:

Proposition 3.1.A complete system of orthogonal eigenvectors of the opet&aorwhere
p is prime such thap = 4m + 1, is given by

V.o with eigenvalue 1
' . (3.11)
{(®;,:jelr=0123} with eigenvalue”
where
13, mi 1= .
@, = égl ) eXp|:pA] 2i| Vi jel r=0,123 (3.12)
andk = A/2.

Proof. We have

2

1 =2 i 2mi ,
(FYgjhm = —— ) _exp , ™ eXpW(quJer)

=
k 2mi _
=€p(>exp|:_m(m+j)2+(4k) 1]
p p
2mi — 5~ 5 .
=exp| — (kj* + km* + 2mkj)
p

= exp[’;’uﬂ Weapn
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and, in general,
i o o
Filgssj = €Xp ?)»J ol BTy (3.13)

where we have used the relation

(5)= () (Z)= () (2) = com-oacarse
p p p p p

{1.1 p=1(mod )
| <D=D)  p=3(mod4

(see [8,theorems 9.4, 9.5]).
Then

1 3 . —Sr 7Tl 7 1_)\‘23
Foj, = > i exp[)g2 5 :|5’:1/fk,»j
s=0 P

13, i ,1—% j ‘
= > i exp[j;lka 5 } exp[yzkak&} Vi

s=0

1 3 i 1 — )26+D
— lré Z i*(erl)r exp|:p)\]22i| w;y)j-ﬁ-lj
s=0

-r
=1 ij,r .

The orthonormality of the eigenvectors is implied by the orthonormality of the vegtoys
and a simple computation based on (3.5).

It is now straightforward to obtain a complete system of eigenvectors of the sine Fourier
transform operatof = C?~1 — CP~1 whose matrix elements are

1 2
(S)yy = Siﬂ(xy) x,y=1...,p—-1 (3.14)
up T \p
obtained by the discrete Fourier transform opereipr
Fo—F;
§=2r _“r (3.15)
2i

Remark that priori S is defined onC?. For the sake of simplicity we have eliminated the
first row and the first column which are equal to zero and we thus consider it as an operator
on Cr—1,

We construct the eigenvalues of the operatdsy means of linear combinations of the

real vectors
1 (271 2) . (271 )
—— cos| —ax“)sin| —bx
JP P P

1 _(27[ 2) . (271 >
—— sin| = ax?)sin| —cx
VP P P

with a suitable choice ofi, b, c. With the previous set of and A we have (the proof is
a straightforward verification based on the actionfospecified in proposition 3.1 and on

(3.2)):

(3.16)
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Proposition 3.2.Let p be a prime such thap = 4m + 1; then the spectrum of the the
operatorS consists of the eigenvaluesl, 0, 1, and a set of corresponding eigenvectors is
specified as follows:

ej(x) +e_j(x) j=1...,2n eigenvalue 0

d;,(x) kel eigenvalue+ 1 (3.17)
@, ,(x) h el eigenvalue— 1.
Heree; : j = 1,..., p — 1 is the canonical basis &, x =1,..., p—1 and

D, (x) = \/lﬁ [cos(zjf)\(Z)le) sin(zlka)]
-‘r\/lﬁ [sin (2;7)\(2)—1@2 + x2)> sin (iﬁm)]
®, ,(x) = Jlﬁ [cos(zgk(zrlxz) sin(Zthﬂ

1 7. /2 . (2
- [sm (7[,\(2)1(112 + xz)) sin <nkhx>] .
NIz p p
Remark. (i) By standard estimates on Gauss sums (we omit the details) it can easily be
seen that the above eigenvectors are normalized as follows:

1
= P || —
107 Il = 19}, =1+ 0 (ﬁ) . (3.18)

(i) By the same argument of corollary 2.1, if= 2N + 1 (N = 2m) an eigenvector
basis forJ is given by

o, (%) kel' x=1,...,N eigenvalue+ 1
k,2N+1 . (3'19)
@) oy 1 (X) hell' x=1,...,N eigenvalue—1.

(iii) The choice of the index: € AT labelling the vectorsd, is due to following
property of the eigenvector components:

®, (x) = O (Ax) if h=xk. (3.20)

Different choices of index (always in al'-type subset oZy) generate analogous relations
among the eigenvector components.

Let us now apply this construction to prove for that= 2N + 1 prime of the form
4m + 1 the matrixJ does not admit any spin configuration among its eigenvectors. To see
this, first remark that, by the same argument of lemma 2.1 and corollary 2.1, the vector
XL(%) :x=1,..., N isin the kernel ofS. Indeed we have

1 & 2 1 P )
S = — sinl —k = k) — —k @i/ p)kx
(Sxok ﬁ;_l I (p X> XL (x) 2 Jp (e (k) — xL(—=k)) szl x(x)

1
NG (e (k) = x.(=k)iy/p=0
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sinceyx.(—1) =1if N =4m + 1 (see, e.g., [7,theorem 9.10]).

The second step is represented by the observation that, wie@ prime of the form
4m+1, if a spin configuration is an eigenvector it cannot distinguish between the eigenvalue
1 or —1 of S (and hence of/), whose eigenspacég™ and V~ have one and the same
dimension as we have seen above. This fact is the key differencepvgitime of the form
4m + 3: here the dimension df * and V~ differs by one and the distinction is possible.

Lemma3.1let p = 2N + 1, N = 2m, and once more denote by* the subspaces
corresponding to the eigenvalugd of S. Then there exists = V*, v = (v1,...,vp),
v € {1}, k = 1,...,p if and only there existsu =€ V7, u = (uy,...,up),
up e {1}k =1,..., p.

Proof. The vectorsrb,jp(x) and®, (x) defined in (3.19) spa ™ and VvV, respectively,

and taken together with the basis ¥f form a basis ofC”. Therefore ifv € V* there are
coefficientsc, such that

v = chcb,jp.

kel

Now set

u= 2{: dh(b;:p

hexl’

with d,; = ¢;. The vectoru is obviously the eigenvector of corresponding to the
eigenvalue—1. Moreover, sinceb,;p(x) = CDZP(Ax), we have

e =Y dy®, ,(x) =Y adl,=uv..

heill kel’

Thereforeu, € {£1} < v;, € {£1} < v, € {£1} x = 1,..., p — 1 and this proves
the lemma. O

Hence we have:

Proposition 3.3.1f p = 2N + 1, N = 2m no antisymmetric eigenvector (with eigenvalue
+1) of the matrixS, and hence no eigenvector #f can have all componentsl.

Proof. Consider the numbers sitRr/p)kx) , k,x=1...,p—1. Only p —1 = 4m

of them are distinct. We can label them@as= sin((2z/p)s),s =1..., %(p -1 =4m.

These numbers are all irrational (see, e.g., [6,theorem 6.15]). Now the eigenvector relation
Sx. = Ovyields, since the eigenvalue 0 has multipliciy 21, p—2m—1 = %(p—l) =2m
independent relations with integer coefficients among the rumbersu,. By the
antisymmetry ofS, these conditions are necessarily equivalent to the standard reflection
conditions

2 2
T8 =Sin<ns> = —Sin(n(p—s)) = Up—s s=1...,2m. (3.22)
p p

If there is an eigenvectar = (v1, ..., v,) With v, € {£1}, s =1, ..., p—1, the eigenvector
condition Sv = v yields p — 1 — m = 3m independent conditions with integer coefficients
because the eigenvalue 1 has multiplicity Again, 2n of these conditions are simply
(equivalent to) the conditions (3.21). We are thus left withindependent relations with
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integer coefficients among thenZnumbersy,;. However, by lemma 3.1, the existencewvof

as above is equivalent to the existence of (vy, ..., u,) Withu, € {1}, s =1,...,p—-1

such thatSv = —v. Therefore, since also the multiplicity of the eigenvalug is m, we

get otherm independent relations with integer coefficients between the numherghe

m relationsSv = v are independent of the relationsSu = —u because otherwise the
vectorsu andv would have non-zero components along each other, thus contradicting the
orthogonality betwee¥ ™ and V~. We thus end up with/2 linearly independent relations
with integer coefficients among then2numbersy, and this contradicts their irrationality.
This proves the statement as far as the maiix concerned, and the assertion fofollows
immediately by antisymmetry. This proves the proposition. |

Remark. The above argument applies also to gny= 4m + 1 non-prime provided

(a) vt and V~ have the same dimension, and
(b) lemma 3.2 also holds fgs non-prime.

Property (a) holds fof§, and hence fot/, because the eigenspacesffcorresponding to

the eigenvalueg and —i have one and the same dimension; however, we are unable to
prove property (b), even though it looks natural, because the eigenvector construction of
proposition 3.1 requirep prime.
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